organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(4*S*,5*S*)-4,5-Bis(3-cyclohexyl-2-thioxobenzimidazol-1-ylmethyl)-2,2-dimethyl-1,3-dioxolane from synchrotron data

Colin Marshall and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Received 24 October 2007; accepted 25 October 2007

Key indicators: single-crystal synchrotron study; T = 120 K; mean σ (C–C) = 0.005 Å; R factor = 0.055; wR factor = 0.128; data-to-parameter ratio = 20.2.

In the chiral title compound, $C_{33}H_{42}N_4O_2S_2$, the dihedral angle between the imidazole ring planes is 79.47 (17)°. The packing is consolidated by van der Waals forces and weak C- $H \cdots S$ interactions.

Related literature

For background, see: Marshall & Harrison (2007); Williamson *et al.* (2006). For reference structural data, see: Allen *et al.* (1987).

Experimental

Crystal data

$C_{33}H_{42}N_4O_2S_2$	b = 10.652 (3) Å
$M_r = 590.83$	c = 14.120 (4) Å
Monoclinic, C2	$\beta = 95.398 \ (6)^{\circ}$
a = 21.876 (6) Å	$V = 3275.5 (16) \text{ Å}^3$

Z = 4Synchrotron radiation $\lambda = 0.6871 \text{ Å}$

Data collection

Bruker SMART CCD diffractometer Absorption correction: none 11222 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.128$ S = 1.007522 reflections 372 parameters 1 restraint

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $C14-H14B\cdots S2^i$ 0.99
 2.86
 3.806 (3)
 160

 $C18-H18\cdots S1^i$ 0.95
 2.78
 3.633 (4)
 150

 $\mu = 0.20 \text{ mm}^{-1}$

T = 120 (2) K

 $R_{\rm int} = 0.036$

 $0.05 \times 0.04 \times 0.03 \text{ mm}$

7522 independent reflections

5903 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Absolute structure: Flack (1983),

 $\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

3144 Friedel pairs

Flack parameter: 0.07 (7)

Symmetry code: (i) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + 2$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

We thank the EPSRC UK National Crystallography Service (Newcastle University and Daresbury Laboratory) for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2390).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2001) SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Marshall, C. & Harrison, W. T. A. (2007). Acta Cryst. E63. Submitted.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Williamson, C., Storey, J. M. D. & Harrison, W. T. A. (2006). J. Chem. Crystallogr. 36, 277–282.

Acta Cryst. (2007). E63, 04502 [doi:10.1107/S1600536807053342]

(4*S*,5*S*)-4,5-Bis(3-cyclohexyl-2-thioxobenzimidazol-1-ylmethyl)-2,2-dimethyl-1,3-dioxolane from synchrotron data

C. Marshall and W. T. A. Harrison

Comment

As part of our ongoing investigations of chiral, C₂-symmetric catalysts (Marshall & Harrison, 2007), the title compound, (I), an intermediate in the synthesis of such materials, has been synthesized and structurally characterized. There is a single molecule in the asymmetric unit of (I) (Fig. 1), with C9 and C13 showing the expected atomic chirality (both have S configuration). The dihedral angle between the imidazole rings (N1/N2/C1/C2/C7 and N3/N4/C15/C16/C21) is 79.47 (17)°.

Both the thio-imidazole ring systems display typical geometrical parameters, with the C—S bond lengths significantly longer than that of an isolated C=S double bond (~1.60 Å), which can be correlated with the contribution of resonance structures involving the lone pair electrons of the adjacent N atoms (Williamson *et al.*, 2006). The terminal cyclohexane rings are normal chairs. Otherwise, the geometry of the molecule may be regarded as normal (Allen *et al.*, 1995).

The crystal packing for (I) is consolidated by van der Walls forces and weak C-H···S interactions. (Table 2).

Experimental

A mixture of (45,5S)-4,5-bis(1-cyclohexylimidazolium-3-methyl)-2,2- dimethyl-1,3-dioxolane dibromide (1.29 g, 1.9 mmol), sulfur (0.18 g, 5.6 mmol), methanol (20 ml), pyridine (1.8 ml) and 1,8-diazabicyclo[5.4.0]undec-7-ene (1.26 g, 8.3 mmol) was heated at 338 K for 18 h. Once cooled to room temperature the mixture was opened to water (50 ml) and extracted with chloroform (3 × 20 ml). The combined extracts were dried over magnesium sulfate, filtered and concentrated under reduced pressure to leave a brown residue. The crude product was purified by column chromatography (SiO₂, ethyl acetate:petroleum ether v/v = 1:1, loaded as a dichloromethane solution) to give the title compound (0.92 g, 83%) as a colourless foam that was recrystallized from methanol to give colourless needles of (I); mp 470 K (from MeOH).

Refinement

The H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Figures

Fig. 1. View of the molecular structures of (I) showing 50% displacement ellipsoids. All the H atoms except H9 and H13 (drawn as spheres of arbitrary radius) are omitted for clarity.

(4*S*,5*S*)-4,5-Bis(3-cyclohexyl-2-thioxobenzimidazol-1-ylmethyl)-2,2-dimethyl-\ 1,3-dioxolane

Crystal data	
$C_{33}H_{42}N_4O_2S_2$	$F_{000} = 1264$
$M_r = 590.83$	$D_{\rm x} = 1.198 {\rm Mg m}^{-3}$
Monoclinic, C2	Synchrotron radiation $\lambda = 0.68710 \text{ Å}$
Hall symbol: C 2y	Cell parameters from 3328 reflections
a = 21.876 (6) Å	$\theta = 2.2 - 27.8^{\circ}$
b = 10.652 (3) Å	$\mu = 0.20 \text{ mm}^{-1}$
c = 14.120 (4) Å	T = 120 (2) K
$\beta = 95.398 \ (6)^{\circ}$	Block, colourless
$V = 3275.5 (16) \text{ Å}^3$	$0.05 \times 0.04 \times 0.03 \text{ mm}$
Z = 4	

Data collection

Bruker SMART CCD diffractometer	5903 reflections with $I > 2\sigma(I)$
Radiation source: Daresbury synchrotron	$R_{\rm int} = 0.036$
Monochromator: silicon	$\theta_{\text{max}} = 27.5^{\circ}$
T = 120(2) K	$\theta_{\min} = 1.8^{\circ}$
ω scans	$h = -29 \rightarrow 23$
Absorption correction: none	$k = -14 \rightarrow 14$
11222 measured reflections	$l = -15 \rightarrow 18$
7522 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.055$	$w = 1/[\sigma^2(F_o^2) + (0.0671P)^2 + 0.1687P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.128$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$
7522 reflections	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$
372 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 3144 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.07 (7)
Secondary atom site location: difference Fourier man	

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.73086 (4)	0.02150 (7)	0.70554 (5)	0.02164 (17)
S2	0.84007 (4)	0.22570 (7)	0.94868 (5)	0.02080 (16)
01	0.89848 (10)	-0.2189 (2)	0.86999 (15)	0.0234 (5)
O2	0.81855 (10)	-0.24757 (18)	0.96132 (14)	0.0217 (5)
N1	0.77308 (12)	-0.1591 (2)	0.58975 (18)	0.0201 (5)
N2	0.84145 (11)	-0.0936 (2)	0.70315 (16)	0.0164 (5)
N3	0.81917 (11)	0.0130 (2)	1.04818 (16)	0.0174 (5)
N4	0.88379 (11)	0.1442 (2)	1.12569 (17)	0.0187 (5)
C1	0.78195 (14)	-0.0793 (3)	0.6658 (2)	0.0164 (6)
C2	0.82764 (15)	-0.2231 (3)	0.5778 (2)	0.0205 (6)
C3	0.84320 (15)	-0.3128 (3)	0.5124 (2)	0.0219 (6)
H3	0.8139	-0.3437	0.4641	0.026*
C4	0.90343 (16)	-0.3548 (3)	0.5210 (2)	0.0262 (7)
H4	0.9154	-0.4165	0.4779	0.031*
C5	0.94693 (16)	-0.3094 (3)	0.5909 (2)	0.0278 (7)
Н5	0.9880	-0.3389	0.5930	0.033*
C6	0.93160 (14)	-0.2220 (3)	0.6575 (2)	0.0239 (7)
H6	0.9610	-0.1918	0.7059	0.029*
C7	0.87146 (14)	-0.1811 (3)	0.6498 (2)	0.0191 (6)
C8	0.86992 (14)	-0.0265 (3)	0.7861 (2)	0.0189 (6)
H8A	0.8482	0.0541	0.7923	0.023*
H8B	0.9130	-0.0071	0.7757	0.023*
С9	0.86904 (13)	-0.0998 (3)	0.8785 (2)	0.0176 (6)
H9	0.8922	-0.0512	0.9308	0.021*
C10	0.86347 (16)	-0.3145 (3)	0.9129 (2)	0.0255 (7)
C11	0.83314 (18)	-0.3989 (3)	0.8362 (3)	0.0346 (8)
H11A	0.8645	-0.4352	0.7993	0.052*
H11B	0.8041	-0.3498	0.7940	0.052*
H11C	0.8111	-0.4664	0.8657	0.052*
C12	0.90456 (19)	-0.3837 (4)	0.9875 (3)	0.0381 (9)
H12A	0.9374	-0.4260	0.9573	0.057*
H12B	0.8804	-0.4462	1.0187	0.057*
H12C	0.9225	-0.3239	1.0349	0.057*

C13	0.80586 (14)	-0.1337 (3)	0.9095 (2)	0.0170 (6)
H13	0.7769	-0.1515	0.8520	0.020*
C14	0.77648 (14)	-0.0399 (3)	0.9730 (2)	0.0188 (6)
H14A	0.7583	0.0294	0.9330	0.023*
H14B	0.7427	-0.0821	1.0024	0.023*
C15	0.84741 (14)	0.1273 (3)	1.0423 (2)	0.0183 (6)
C16	0.83756 (14)	-0.0426 (3)	1.1360 (2)	0.0191 (6)
C17	0.82177 (15)	-0.1563 (3)	1.1748 (2)	0.0233 (7)
H17	0.7937	-0.2123	1.1413	0.028*
C18	0.84907 (16)	-0.1842 (3)	1.2649 (2)	0.0287 (8)
H18	0.8390	-0.2608	1.2941	0.034*
C19	0.89093 (17)	-0.1029 (3)	1.3140 (2)	0.0302 (8)
H19	0.9093	-0.1262	1.3752	0.036*
C20	0.90623 (15)	0.0113 (3)	1.2752 (2)	0.0251 (7)
H20	0.9344	0.0671	1.3089	0.030*
C21	0.87863 (14)	0.0410 (3)	1.1848 (2)	0.0200 (6)
C22	0.71324 (14)	-0.1752 (3)	0.5341 (2)	0.0218 (6)
H22	0.6845	-0.1130	0.5590	0.026*
C23	0.68706 (15)	-0.3058(3)	0.5503 (2)	0.0258 (7)
H23A	0.6841	-0.3191	0.6191	0.031*
H23B	0.7147	-0.3706	0.5279	0.031*
C24	0.62329 (16)	-0.3178 (4)	0.4961 (3)	0.0334 (8)
H24A	0.5946	-0.2588	0.5233	0.040*
H24B	0.6076	-0.4041	0.5035	0.040*
C25	0.62588 (16)	-0.2890(3)	0.3902 (2)	0.0303 (8)
H25A	0.6512	-0.3533	0.3619	0.036*
H25B	0.5839	-0.2934	0.3574	0.036*
C26	0.65257 (16)	-0.1606(3)	0.3747 (3)	0.0322 (8)
H26A	0.6247	-0.0956	0.3963	0.039*
H26B	0.6558	-0.1478	0.3059	0.039*
C27	0.71624 (16)	-0.1458(3)	0.4289 (2)	0.0266 (7)
H27A	0.7456	-0.2034	0.4019	0.032*
H27B	0.7310	-0.0587	0.4218	0.032*
C28	0.92048 (14)	0.2584 (3)	1.1462 (2)	0.0193 (6)
H28	0.9126	0.3145	1.0896	0.023*
C29	0.98903 (14)	0.2306 (3)	1.1566 (2)	0.0268 (7)
H29A	1.0007	0.1868	1.0991	0.032*
H29B	0.9993	0.1753	1.2122	0.032*
C30	1.02441 (17)	0.3547 (3)	1.1699 (3)	0.0340 (8)
H30A	1.0689	0.3366	1.1810	0.041*
H30B	1.0175	0.4051	1.1109	0.041*
C31	1 00441 (16)	0 4309 (3)	1 2535 (3)	0.0329 (8)
H31A	1.0163	0.3854	1.3136	0.040*
H31B	1.0260	0.5127	1.2565	0.040*
C32	0.93546 (15)	0.4532 (3)	1.2439 (2)	0.0261 (7)
H32A	0.9244	0.5087	1.1887	0.031*
H32B	0.9237	0.4961	1.3016	0.031*
C33	0.89993 (16)	0.3299 (3)	1.2304 (2)	0.0268 (7)
H33A	0.9071	0.2781	1.2886	0.032*

H33B	0.8554	0.3477	1.2190	6 0.0	32*	
Atomic disp	lacement parameter	$rs(A^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0258 (4)	0.0213 (4)	0.0178 (4)	0.0050 (3)	0.0019 (3)	0.0001 (3)
S2	0.0281 (4)	0.0170 (3)	0.0171 (4)	0.0009 (3)	0.0014 (3)	0.0027 (3)
01	0.0274 (12)	0.0237 (11)	0.0200 (11)	0.0070 (9)	0.0066 (9)	0.0056 (9)
02	0.0342 (13)	0.0171 (11)	0.0148 (10)	0.0016 (9)	0.0082 (9)	0.0032 (8)
N1	0.0248 (14)	0.0191 (12)	0.0160 (13)	-0.0019 (10)	-0.0007 (10)	0.0004 (10)
N2	0.0195 (13)	0.0182 (11)	0.0116 (12)	-0.0025 (10)	0.0025 (10)	0.0003 (10)
N3	0.0219 (12)	0.0180 (11)	0.0126 (11)	-0.0025 (11)	0.0033 (9)	0.0008 (10)
N4	0.0255 (14)	0.0158 (11)	0.0149 (12)	-0.0022 (10)	0.0025 (10)	0.0005 (10)
C1	0.0224 (15)	0.0143 (13)	0.0122 (14)	-0.0013 (11)	0.0004 (11)	0.0035 (11)
C2	0.0289 (16)	0.0178 (13)	0.0151 (15)	-0.0030 (13)	0.0032 (12)	0.0031 (12)
C3	0.0326 (17)	0.0199 (14)	0.0136 (14)	-0.0034 (13)	0.0038 (12)	0.0002 (12)
C4	0.042 (2)	0.0213 (15)	0.0175 (16)	0.0037 (14)	0.0125 (14)	-0.0002 (13)
C5	0.0313 (18)	0.0289 (16)	0.0252 (17)	0.0111 (14)	0.0127 (14)	0.0073 (14)
C6	0.0236 (16)	0.0340 (16)	0.0145 (15)	0.0007 (13)	0.0036 (12)	0.0015 (13)
C7	0.0269 (16)	0.0191 (14)	0.0117 (14)	-0.0003 (12)	0.0039 (12)	0.0025 (11)
C8	0.0190 (15)	0.0217 (14)	0.0154 (14)	-0.0024 (12)	-0.0015 (11)	-0.0010 (12)
C9	0.0202 (15)	0.0202 (14)	0.0122 (13)	0.0002 (12)	0.0005 (11)	0.0002 (11)
C10	0.0372 (19)	0.0206 (14)	0.0197 (16)	0.0054 (13)	0.0069 (14)	0.0013 (13)
C11	0.050 (2)	0.0259 (17)	0.0290 (19)	-0.0014 (16)	0.0083 (17)	-0.0079 (15)
C12	0.054 (2)	0.0331 (19)	0.0275 (19)	0.0147 (18)	0.0066 (17)	0.0080 (16)
C13	0.0241 (16)	0.0171 (13)	0.0094 (13)	-0.0017 (11)	-0.0012 (11)	0.0017 (11)
C14	0.0198 (15)	0.0196 (14)	0.0171 (14)	-0.0009 (12)	0.0029 (11)	-0.0010 (12)
C15	0.0204 (15)	0.0181 (14)	0.0170 (14)	0.0020 (12)	0.0054 (11)	-0.0021 (12)
C16	0.0234 (16)	0.0199 (14)	0.0143 (14)	-0.0019 (12)	0.0037 (11)	-0.0004 (11)
C17	0.0308 (18)	0.0232 (15)	0.0167 (15)	-0.0066 (13)	0.0059 (13)	-0.0015 (13)
C18	0.044 (2)	0.0247 (16)	0.0182 (16)	-0.0057 (15)	0.0040 (14)	0.0038 (13)
C19	0.045 (2)	0.0281 (16)	0.0172 (16)	-0.0042 (15)	0.0001 (14)	0.0040 (14)
C20	0.0354 (18)	0.0248 (15)	0.0148 (14)	-0.0046 (14)	0.0003 (12)	0.0019 (13)
C21	0.0264 (15)	0.0175 (14)	0.0165 (14)	-0.0040 (12)	0.0041 (11)	-0.0018 (12)
C22	0.0253 (16)	0.0219 (15)	0.0172 (15)	0.0017 (12)	-0.0024 (12)	-0.0040 (12)
C23	0.0271 (17)	0.0295 (17)	0.0201 (16)	-0.0028 (13)	-0.0015 (13)	0.0039 (13)
C24	0.0300 (19)	0.0405 (19)	0.0289 (19)	-0.0083 (15)	-0.0010 (15)	-0.0035 (16)
C25	0.0331 (18)	0.0292 (18)	0.0265 (17)	0.0027 (15)	-0.0081 (14)	-0.0047 (15)
C26	0.038 (2)	0.0299 (17)	0.0252 (18)	0.0029 (15)	-0.0129 (15)	-0.0015 (15)
C27	0.0336 (19)	0.0256 (16)	0.0188 (15)	-0.0077 (14)	-0.0079 (13)	0.0045 (13)
C28	0.0226 (15)	0.0168 (14)	0.0184 (14)	-0.0042 (11)	0.0016 (11)	0.0004 (11)
C29	0.0256 (16)	0.0272 (15)	0.0287 (17)	-0.0027 (15)	0.0080 (12)	-0.0100 (15)
C30	0.0288 (18)	0.0373 (19)	0.037 (2)	-0.0118 (16)	0.0098 (15)	-0.0145 (17)
C31	0.0301 (19)	0.0334 (18)	0.034 (2)	-0.0080 (15)	-0.0030 (15)	-0.0124 (16)
C32	0.0312 (18)	0.0215 (15)	0.0251 (17)	-0.0009 (14)	-0.0008 (14)	-0.0075 (14)
C33	0.0271 (17)	0.0235 (15)	0.0297 (18)	0.0001 (13)	0.0029 (14)	-0.0040 (14)

Geometric parameters (Å, °)

S1—C1	1.684 (3)	C16—C17	1.387 (4)
S2—C15	1.683 (3)	C16—C21	1.399 (4)
O1—C9	1.433 (4)	C17—C18	1.386 (4)
O1—C10	1.441 (4)	C17—H17	0.9500
O2—C13	1.430 (3)	C18—C19	1.396 (5)
O2—C10	1.438 (4)	C18—H18	0.9500
N1—C1	1.369 (4)	C19—C20	1.388 (5)
N1—C2	1.399 (4)	С19—Н19	0.9500
N1—C22	1.472 (4)	C20—C21	1.396 (4)
N2—C1	1.366 (4)	С20—Н20	0.9500
N2—C7	1.400 (4)	C22—C27	1.525 (4)
N2—C8	1.460 (4)	C22—C23	1.530 (4)
N3—C15	1.372 (4)	С22—Н22	1.0000
N3—C16	1.399 (4)	C23—C24	1.532 (5)
N3—C14	1.459 (4)	С23—Н23А	0.9900
N4—C15	1.369 (4)	С23—Н23В	0.9900
N4—C21	1.391 (4)	C24—C25	1.533 (5)
N4—C28	1.471 (4)	C24—H24A	0.9900
С2—С3	1.393 (4)	C24—H24B	0.9900
C2—C7	1.404 (4)	C25—C26	1.510 (5)
C3—C4	1.386 (5)	C25—H25A	0.9900
С3—Н3	0.9500	С25—Н25В	0.9900
C4—C5	1.391 (5)	C26—C27	1.533 (5)
C4—H4	0.9500	C26—H26A	0.9900
С5—С6	1.386 (5)	C26—H26B	0.9900
С5—Н5	0.9500	С27—Н27А	0.9900
C6—C7	1.381 (4)	С27—Н27В	0.9900
С6—Н6	0.9500	C28—C33	1.515 (4)
C8—C9	1.523 (4)	C28—C29	1.522 (4)
C8—H8A	0.9900	C28—H28	1.0000
C8—H8B	0.9900	C29—C30	1.534 (5)
C9—C13	1.532 (4)	С29—Н29А	0.9900
С9—Н9	1.0000	С29—Н29В	0.9900
C10-C12	1.512 (5)	C30—C31	1.530 (5)
C10-C11	1.512 (5)	С30—Н30А	0.9900
C11—H11A	0.9800	С30—Н30В	0.9900
C11—H11B	0.9800	C31—C32	1.520 (5)
C11—H11C	0.9800	C31—H31A	0.9900
C12—H12A	0.9800	C31—H31B	0.9900
C12—H12B	0.9800	C32—C33	1.529 (5)
C12—H12C	0.9800	С32—Н32А	0.9900
C13—C14	1.524 (4)	С32—Н32В	0.9900
C13—H13	1.0000	С33—Н33А	0.9900
C14—H14A	0.9900	С33—Н33В	0.9900
C14—H14B	0.9900		
C9—O1—C10	109.2 (2)	С16—С17—Н17	121.7

C13—O2—C10	106.6 (2)	C17—C18—C19	122.0 (3)
C1—N1—C2	109.8 (2)	C17—C18—H18	119.0
C1—N1—C22	123.0 (3)	C19-C18-H18	119.0
C2—N1—C22	127.2 (3)	C20-C19-C18	121.2 (3)
C1—N2—C7	110.2 (2)	С20—С19—Н19	119.4
C1—N2—C8	125.0 (2)	С18—С19—Н19	119.4
C7—N2—C8	124.8 (2)	C19—C20—C21	117.4 (3)
C15—N3—C16	109.6 (2)	С19—С20—Н20	121.3
C15—N3—C14	124.0 (2)	C21—C20—H20	121.3
C16—N3—C14	126.4 (2)	N4—C21—C20	132.5 (3)
C15—N4—C21	109.8 (2)	N4—C21—C16	107.0 (2)
C15—N4—C28	122.7 (2)	C20-C21-C16	120.5 (3)
C21—N4—C28	127.5 (2)	N1—C22—C27	112.2 (3)
N2—C1—N1	107.1 (2)	N1—C22—C23	110.7 (2)
N2—C1—S1	125.5 (2)	C27—C22—C23	112.6 (3)
N1—C1—S1	127.4 (2)	N1—C22—H22	107.0
C3—C2—N1	132.8 (3)	С27—С22—Н22	107.0
C3—C2—C7	120.4 (3)	С23—С22—Н22	107.0
N1—C2—C7	106.8 (3)	C22—C23—C24	109.7 (3)
C4—C3—C2	116.9 (3)	С22—С23—Н23А	109.7
С4—С3—Н3	121.5	C24—C23—H23A	109.7
С2—С3—Н3	121.5	С22—С23—Н23В	109.7
C3—C4—C5	122.1 (3)	С24—С23—Н23В	109.7
C3—C4—H4	119.0	H23A—C23—H23B	108.2
С5—С4—Н4	119.0	C23—C24—C25	110.8 (3)
C6—C5—C4	121.4 (3)	C23—C24—H24A	109.5
С6—С5—Н5	119.3	C25—C24—H24A	109.5
C4—C5—H5	119.3	C23—C24—H24B	109.5
C7—C6—C5	116.7 (3)	C25—C24—H24B	109.5
С7—С6—Н6	121.7	H24A—C24—H24B	108.1
С5—С6—Н6	121.7	C26—C25—C24	111.9 (3)
C6—C7—N2	131.3 (3)	C26—C25—H25A	109.2
C6—C7—C2	122.4 (3)	C24—C25—H25A	109.2
N2—C7—C2	106.2 (3)	C26—C25—H25B	109.2
N2—C8—C9	113.4 (2)	C24—C25—H25B	109.2
N2—C8—H8A	108.9	H25A—C25—H25B	107.9
С9—С8—Н8А	108.9	C25—C26—C27	111.5 (3)
N2—C8—H8B	108.9	С25—С26—Н26А	109.3
С9—С8—Н8В	108.9	C27—C26—H26A	109.3
H8A—C8—H8B	107.7	С25—С26—Н26В	109.3
O1—C9—C8	109.9 (2)	C27—C26—H26B	109.3
O1—C9—C13	103.9 (2)	H26A—C26—H26B	108.0
C8—C9—C13	116.8 (2)	C22—C27—C26	110.1 (3)
01—С9—Н9	108.7	С22—С27—Н27А	109.6
С8—С9—Н9	108.7	С26—С27—Н27А	109.6
С13—С9—Н9	108.7	С22—С27—Н27В	109.6
O2—C10—O1	105.3 (2)	С26—С27—Н27В	109.6
O2—C10—C12	107.4 (3)	Н27А—С27—Н27В	108.1
O1—C10—C12	109.4 (3)	N4—C28—C33	111.9 (2)

O2—C10—C11	111.2 (3)	N4—C28—C29	111.8 (2)
O1—C10—C11	109.5 (3)	C33—C28—C29	112.7 (3)
C12—C10—C11	113.6 (3)	N4—C28—H28	106.7
C10-C11-H11A	109.5	C33—C28—H28	106.7
C10-C11-H11B	109.5	С29—С28—Н28	106.7
H11A—C11—H11B	109.5	C28—C29—C30	108.9 (3)
C10-C11-H11C	109.5	С28—С29—Н29А	109.9
H11A—C11—H11C	109.5	С30—С29—Н29А	109.9
H11B—C11—H11C	109.5	С28—С29—Н29В	109.9
C10-C12-H12A	109.5	С30—С29—Н29В	109.9
C10-C12-H12B	109.5	H29A—C29—H29B	108.3
H12A—C12—H12B	109.5	C31—C30—C29	112.0 (3)
C10-C12-H12C	109.5	C31—C30—H30A	109.2
H12A—C12—H12C	109.5	С29—С30—Н30А	109.2
H12B-C12-H12C	109.5	С31—С30—Н30В	109.2
O2—C13—C14	109.1 (2)	С29—С30—Н30В	109.2
O2—C13—C9	102.1 (2)	H30A—C30—H30B	107.9
C14—C13—C9	117.1 (2)	C32—C31—C30	111.6 (3)
O2—C13—H13	109.4	C32—C31—H31A	109.3
C14—C13—H13	109.4	C30—C31—H31A	109.3
С9—С13—Н13	109.4	C32—C31—H31B	109.3
N3—C14—C13	113.8 (2)	C30—C31—H31B	109.3
N3—C14—H14A	108.8	H31A—C31—H31B	108.0
C13—C14—H14A	108.8	C31—C32—C33	111.4 (3)
N3—C14—H14B	108.8	C31—C32—H32A	109.3
C13—C14—H14B	108.8	С33—С32—Н32А	109.3
H14A—C14—H14B	107.7	С31—С32—Н32В	109.3
N4—C15—N3	107.1 (2)	С33—С32—Н32В	109.3
N4—C15—S2	126.8 (2)	H32A—C32—H32B	108.0
N3—C15—S2	126.1 (2)	C28—C33—C32	110.1 (3)
C17—C16—N3	131.2 (3)	С28—С33—Н33А	109.6
C17—C16—C21	122.3 (3)	С32—С33—Н33А	109.6
N3—C16—C21	106.6 (2)	С28—С33—Н33В	109.6
C18—C17—C16	116.6 (3)	С32—С33—Н33В	109.6
C18—C17—H17	121.7	H33A—C33—H33B	108.2
C7—N2—C1—N1	1.2 (3)	C28—N4—C15—N3	-178.7 (2)
C8—N2—C1—N1	-179.4 (2)	C21—N4—C15—S2	-178.5 (2)
C7—N2—C1—S1	-177.2 (2)	C28—N4—C15—S2	3.0 (4)
C8—N2—C1—S1	2.3 (4)	C16—N3—C15—N4	0.3 (3)
C2—N1—C1—N2	-0.9 (3)	C14—N3—C15—N4	-179.9 (2)
C22—N1—C1—N2	176.6 (3)	C16—N3—C15—S2	178.6 (2)
C2—N1—C1—S1	177.4 (2)	C14—N3—C15—S2	-1.6 (4)
C22—N1—C1—S1	-5.1 (4)	C15—N3—C16—C17	179.8 (3)
C1—N1—C2—C3	-179.9 (3)	C14—N3—C16—C17	0.1 (5)
C22—N1—C2—C3	2.7 (5)	C15—N3—C16—C21	-0.3 (3)
C1—N1—C2—C7	0.3 (3)	C14—N3—C16—C21	179.9 (3)
C22—N1—C2—C7	-177.1 (3)	N3-C16-C17-C18	179.5 (3)
N1—C2—C3—C4	178.7 (3)	C21—C16—C17—C18	-0.4 (5)
C7—C2—C3—C4	-1.5 (4)	C16—C17—C18—C19	-0.7 (5)

C2—C3—C4—C5	-0.6 (5)	C17—C18—C19—C20	1.3 (6)
C3—C4—C5—C6	1.9 (5)	C18—C19—C20—C21	-0.7 (5)
C4—C5—C6—C7	-1.0 (5)	C15—N4—C21—C20	179.0 (3)
C5—C6—C7—N2	-178.7 (3)	C28—N4—C21—C20	-2.6 (5)
C5—C6—C7—C2	-1.1 (5)	C15—N4—C21—C16	0.0 (3)
C1—N2—C7—C6	176.9 (3)	C28—N4—C21—C16	178.4 (3)
C8—N2—C7—C6	-2.5 (5)	C19—C20—C21—N4	-179.2 (3)
C1—N2—C7—C2	-1.0 (3)	C19—C20—C21—C16	-0.4 (5)
C8—N2—C7—C2	179.6 (2)	C17—C16—C21—N4	-180.0 (3)
C3—C2—C7—C6	2.4 (5)	N3-C16-C21-N4	0.2 (3)
N1—C2—C7—C6	-177.7 (3)	C17—C16—C21—C20	0.9 (5)
C3—C2—C7—N2	-179.4 (3)	N3-C16-C21-C20	-178.9 (3)
N1—C2—C7—N2	0.4 (3)	C1—N1—C22—C27	122.3 (3)
C1—N2—C8—C9	95.4 (3)	C2—N1—C22—C27	-60.7 (4)
C7—N2—C8—C9	-85.2 (3)	C1—N1—C22—C23	-111.1 (3)
C10—O1—C9—C8	-138.1 (2)	C2—N1—C22—C23	66.0 (4)
C10-01-C9-C13	-12.4 (3)	N1-C22-C23-C24	176.9 (3)
N2-C8-C9-O1	56.6 (3)	C27—C22—C23—C24	-56.6 (4)
N2-C8-C9-C13	-61.3 (3)	C22—C23—C24—C25	55.6 (4)
C13—O2—C10—O1	29.6 (3)	C23—C24—C25—C26	-56.2 (4)
C13—O2—C10—C12	146.1 (3)	C24—C25—C26—C27	55.6 (4)
C13—O2—C10—C11	-89.0 (3)	N1-C22-C27-C26	-178.5 (3)
C9—O1—C10—O2	-9.5 (3)	C23—C22—C27—C26	55.9 (4)
C9—O1—C10—C12	-124.6 (3)	C25—C26—C27—C22	-54.6 (4)
C9—O1—C10—C11	110.2 (3)	C15—N4—C28—C33	116.4 (3)
C10—O2—C13—C14	-160.9 (2)	C21—N4—C28—C33	-61.8 (4)
C10—O2—C13—C9	-36.4 (3)	C15—N4—C28—C29	-116.1 (3)
O1—C9—C13—O2	29.6 (3)	C21—N4—C28—C29	65.7 (4)
C8—C9—C13—O2	150.7 (2)	N4-C28-C29-C30	175.5 (3)
O1-C9-C13-C14	148.7 (2)	C33—C28—C29—C30	-57.4 (4)
C8—C9—C13—C14	-90.2 (3)	C28—C29—C30—C31	55.1 (4)
C15—N3—C14—C13	97.8 (3)	C29—C30—C31—C32	-54.7 (4)
C16—N3—C14—C13	-82.4 (3)	C30—C31—C32—C33	54.2 (4)
O2-C13-C14-N3	72.7 (3)	N4—C28—C33—C32	-175.1 (2)
C9—C13—C14—N3	-42.5 (3)	C29—C28—C33—C32	57.8 (4)
C21—N4—C15—N3	-0.2 (3)	C31—C32—C33—C28	-55.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!$
C14—H14B···S2 ⁱ	0.99	2.86	3.806 (3)	160
C18—H18···S1 ⁱ	0.95	2.78	3.633 (4)	150
Symmetry codes: (i) $-x+3/2$, $y-1/2$, $-z+2$.				

